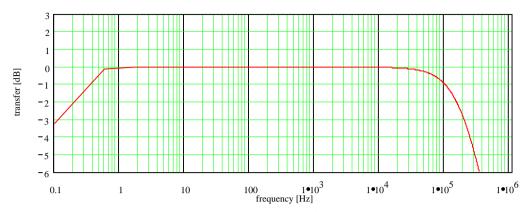
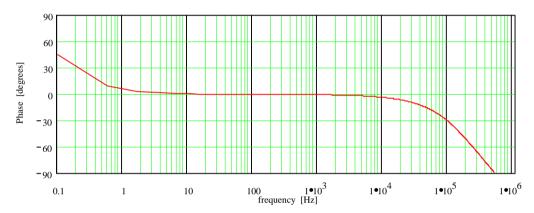
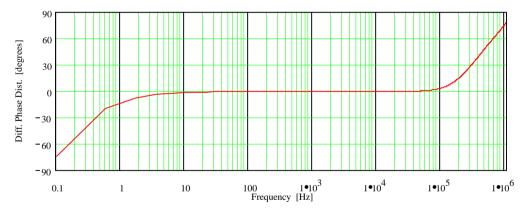

WIDE BANDWIDTH TOROIDAL SPECIAL HEADPHONE TRANSFORMER

Type and Application	on		VDV-600-32-HPH impedance match	
Primary Impedance	:		Raa = 0.6	$[k_{\Omega}]$
Secondary Impedance	:		Rls = 32	$[\Omega]$
Turns Ratio Np/Ns		:	Ratio = 4.332	[]
UL-tap:			tap = 0	[%]
Cathode Feedback Ratio	:		cfb = 0	[%]
1 dB Frequency Range [Hz to kHz]	(3)	:	flf = 0.487	fhf = 42.128
-1 dB Frequency Range [Hz to kHz]	(3)	:	f11 = 0.208	fh1 = 95.663
-3 dB Requency Range [Hz to kHz]	(3)	:	f13 = 0.106	fh3 = 186.624
Nominal Power (1)		:	Pn = 3	[W]
- 3 dB Power Bandwidth starting at	:		fu = 14	[Hz]
Total primary Inductance (2)		:	Lp = 175	[H]
Primary Leakage Inductance		:	lsp = 0.7	[mH]
Effective Primary Capacitance	:		cip = 1.2	[nF]
Total Primary DC Resistance	:		Rip = 40	$[\Omega]$
Total Secondary DC Resistance	:		Ris = 4.3	$[\Omega]$
Tubes Plate Resistance per section	:		ri = 0.05	$[k\Omega]$
Insertion Loss	:		Iloss = 0.795	[dB]
Q-factor 2nd order HF roll-off (5)	:		Q = 0.334	[]
HF roll-off Specific Frequency (5)	:		Fo = 497.61	[kHz]
Quality Factor (5)		:	$QF = 2.5 \cdot 10^5$	[]
Quality Decade Factor = log(QF) (5)	:		QDF = 5.398	[]
Tuning Factor (5)	:		TF = 7.068	[]
Tuning Decade Factor = $log(TF)$ (5)	:		TDF = 0.849	[]
Frequency Decade Factor (4,5)	:		FDF = 6.247	[]


- (1): calculated under the conditions of balancing the DC-currents and the AC-anode voltages of the powertubes driving the transformer
- (2): measured at 100 Vrms at 50Hz over total primary
- calculation at 1 Watt in RIs; ri and RIs are pure Ohmic (3):
- (4): defined as FDF = log(fh3/fl3) = number of frequency decades transfered
- ir. Menno van der Veen; Theory and Practise of Wide Bandwidth Toroidal Output Transformers; preprint 3887, 97th AES Convention San Francisco Copyright 1994 Vanderveen; Version 1.7; results date 23-7-2012. (5):
- (C):
 - Final specs can deviate 15% or improve without notice



TOROIDAL HEADPHONE TRANSFORMER; VDV-600-32-HPH Impedance match


Frequency Response; Vertical 1 dB/div; Horizontal .1 Hz to 1 MHz (3)

Phase Response; Vertical 30 deg./div; Horizontal .1 Hz to 1 MHz

Differential Phase Distortion; vert. 30 deg./div; hor .1 Hz to 1 MHz See: W.M.Leach, Differential Time Delay..; JAES sept.89 pp.709-715

(C): Copyright 1994: Ir. bureau Vanderveen